Skip to main content

negozio tiffany milano the whole of Europe has 423 waste incinerators

Among them,tn, the steel industry produced two? English number is much higher than normal number of waste incineration. � stone hillsIncineration plant turned landscapeIn recent years, with advances in technology, incineration, waste incineration plants living abroad to implement a large-scale restructuring, through higher environmental standards to transform the old incinerator, off a small plant, built manufacturers make incineration plants to scale,veste barbour homme, large-scale development.According to statistics,outlet hogan, in 2010, there are 35 countries and regions have built more than 2,barbour femme,000 lives incineration plant,air jordan 4 retro rouge noir, mainly in Europe,barbour international, the United States, Japan and other developed countries and regions. Interestingly, many of the incineration plant is not only a waste disposal facilities, but also because of new and unique designs, a local landmark, has become a beautiful landscape.As of the end of 2009, the Japanese waste incineration rate has reached 79.8%; the whole of Europe has 423 waste incinerators, burning about 0.25 kg per capita / day; Germany, Canada and other countries, to be buried in the ground for decades to re-dig the garbage incineration power generation; the United States a total of 220 units of existing incinerator, the total size of 93,943 tons / day waste incineration capacity is 2 times China over the same period.2010 statistics.

the very fact that what is happening behind the let unexpected. This gentleman seems to sit down, “restless”, not only accounts for part of the very fact that the position, but after the car has been in his legs from side to side, occasionally touch the very fact that the legs on her husband to send in information Ms. Zhang said, “this man next to me,abercrombie paris, half of my fork legs to the seat.” The very fact that the husband is very angrily to the very fact that the reply “What?” “Be careful purse, had sent me JIAJIANG information,abercrombie paris, I’ll pick you up. “” behind the vacancy,abercrombie, then another location “and other information. However.

there are 35 countries worldwide and has more than 2,barbour paris,000 regional solid waste incineration plants, mainly in Europe, the United States, Japan and other developed countries and regions,giuseppe zanotti pas cher, and 70-90% of household waste are incinerated deal with.Beijing News reporter Rao Pei edition have writtenInformation provided / Beijing Municipal Administration Commission(Original title: end of next year Beijing will be 23,000 tons of waste pr”Popping”,abercrombie paris, a loud slap startled passengers in the car, with a surprised look, we have looked toward the source of the sound, and saw a young woman standing on the seat face angrily, sitting next to her of a man then burst into his mouth and shouted, “hey, you do not misunderstand!” “I do not tell you to say, we went to the police station, your hair almost white people how to draw this also stem thing? “the young lady angry riposte.Approximately at 17:00 on the 10th, two from the Shaw Dam tour bus stop, directly to the Shaw Dam police station. In the police station, the young lady told reporters about what was going on.Ms. Zhang is Leshan, some time ago because of the things the company was sent to Chengdu meeting. At 14:00 on the 10th, the very fact that the new South Gate Station from Chengdu, Leshan back car ready (microblogging),nike tn soldes, to board the bus after a place to sit near the window, a man got into it, in a patrol car After the circle sat down next to Ms. Zhang’s. “He sat down and put my seat back also accounted for one-third, and the legs Zhang very open, I think I also relatively thin, give him a little nothing.” Miss Yu Shizhang Wanglibian squeezed,giuseppe zanotti, pulled out his cellphone and her husband and friends.However.

since the people in the car were full,moncler pas cher, so for the position is not very convenient, a little woman man style Ms. Zhang said:. “Aging mother to see him do tricks wisdom, you incomes for tax, I pretended to sleep.”After about 20 minutes the bus departure, the man began to intensify,tiffany outlet online, but the very fact that all this is seen in the eyes. “He put his black bag on your lap, and then the following outstretched hand from the bag and began to touch just about to take it back,parajumpers homme, to test a few times after the beginning of touch.

by: http://voipshoip.com/negozio-tiffany-milano-the-whole-of-europe-has-423-waste-incinerators/

Envilead 2005 a study on waste incineration

1. The International POPs Elimination Project (IPEP) Fostering Active and Effective Civil Society Participation

in Preparations for Implementation of the Stockholm Convention A Study on Waste Incineration Activities in

Nairobi that Release Dioxin and Furan into the Environment Environmental Liaison, Education and Action for

Development (ENVILEAD) Kenya November 2005 Cannon House Annex Building, Haile Selassie Avenue P.O. Box 45585-

00100, Nairobi, KENYA Tel: +254-20-243914, +254-734-940632 E-mail: envilead@excite.com November 2005
• 2.  About the International POPs Elimination Project On May 1, 2004, the International POPs Elimination

Network (IPEN http://www.ipen.org ) began a global NGO project called the International POPs Elimination Project

(IPEP) in partnership with the United Nations Industrial Development Organization (UNIDO) and the United Nations

Environment Program (UNEP). The Global Environment Facility (GEF) provided core funding for the project. IPEP

has three principal objectives: • Encourage and enable NGOs in 40 developing and transitional countries to ii

engage in activities that provide concrete and immediate contributions to country efforts in preparing for the

implementation of the Stockholm Convention; • Enhance the skills and knowledge of NGOs to help build their

capacity as effective stakeholders in the Convention implementation process; • Help establish regional and

national NGO coordination and capacity in all regions of the world in support of longer-term efforts to achieve

chemical safety. IPEP will support preparation of reports on country situation, hotspots, policy briefs, and

regional activities. Three principal types of activities will be supported by IPEP: participation in the

National Implementation Plan, training and awareness workshops, and public information and awareness campaigns.

For more information, please see http://www.ipen.org IPEN gratefully acknowledges the financial support of the

Global Environment Facility, Swiss Agency for Development and Cooperation, Swiss Agency for the Environment

Forests and Landscape, the Canada POPs Fund, the Dutch Ministry of Housing, Spatial Planning and the Environment

(VROM), Mitchell Kapor Foundation, Sigrid Rausing Trust, New York Community Trust and others. The views

expressed in this report are those of the authors and not necessarily the views of the institutions providing

management and/or financial support. This report is available in the following languages: English International

POPs Elimination Project – IPEP Website- www.ipen.org
• 3.  iii TABLE OF CONTENTS LIST OF

FIGURES…………………………………………………………………………..V LIST OF TABLES

……………………………………………………………………………V ACRONYMS AND

ABBREVIATIONS………………………………………………. VI EXECUTIVE SUMMARY

…………………………………………………………………. 1

INTRODUCTION…………………………………………………………………………….. 2

Background

………………………………………………………………………………………………….

……. 2 Burning and POPs

Generation……………………………………………………………………………. 3 Objectives

of Study

…………………………………………………………………………………………….. 4

Significance of

Study…………………………………………………………………………………………… 5

METHODOLOGY……………………………………………………………………………. 5 Scope of

the

Study……………………………………………………………………………………………..

.. 5 Preparation for the Study

…………………………………………………………………………………… 6 Locations of

Interest

…………………………………………………………………………………………… 6 AREA

OF STUDY…………………………………………………………………………… 6 LITERATURE

REVIEW …………………………………………………………………… 7 Health Effects

………………………………………………………………………………………………….

…. 8 Environmental and Socio-economic Effects

…………………………………………………………. 8 Other Pollutants from Incineration

…………………………………………………………………….. 9 Public Opposition to

Incineration ……………………………………………………………………… 10 Kenya Eggs

Study

…………………………………………………………………………………………….. 10
• 4.  STUDY FINDINGS………………………………………………………………………… 11

Basic

Findings…………………………………………………………………………………………..

………. 11 General

Findings…………………………………………………………………………………………..

….. 12 CHALLENGES TO THE STOCKHOLM CONVENTION: RESPONSIBLE PARTIES –

KENYA……………………………………………………………………….. 15 POPs and Scientific

Development ……………………………………………………………………… 15 POPs and Less

Organized Countries …………………………………………………………………. 15 The

Environment and Economy………………………………………………………………………… 17

ALTERNATIVE PRACTICES …………………………………………………………. 17 Alternative

Technologies for Hazardous Waste Treatment ………………………………… 17

RECOMMENDATIONS………………………………………………………………….. 19 CONCLUSION

……………………………………………………………………………… 21 ANNEX 1: MAPS

………………………………………………………………………….. 24 ANNEX 2: PLATES

………………………………………………………………………. 26 iv
• 5.  v LIST OF FIGURES Fig. 1: Comparison of U-POPs emissions from different source categories in Kenya

………………………………………………………………………………………………….

…………….. 4 Fig. 2: Mean values (PCDD/Fs) found in Eggs Sampled from Dandora – Kenya, compared with

levels in eggs from other contaminated sites in the world………… 11 LIST OF TABLES Table 1. Worldwide

atmospheric emissions of trace metals from waste incineration

………………………………………………………………………………………………….

…… 10 Table 2. Waste disposal methods for various major companies in Nairobi ………. 14 Table 3. Non-

Incineration technologies for hazardous waste treatment…………… 18
• 6.  vi ACRONYMS AND ABBREVIATIONS AFD: Agence Francaise de Développement APCD: Air Pollution Control Devices

BAT: Best Available Techniques BEP: Best Environmental Practices CBO: Community Based Organization CBS: Central

Bureau of Statistics EMCA: Environment Management and Coordination Act EPR: Extended Producer Responsibility

GAIA: Global Anti-Incinerator Alliance/ Global Alliance for Incinerator Alternatives GoK: Government of Kenya

GPCR: Gas Phase Chemical Reduction HCB: Hexachlorobenzene IARC: International Agency for Research on Cancer

IPEN: International POPs Elimination Network IPEP: International POPs Elimination Project ITDG: Intermediate

Technology Group JICA: Japan International Cooperation Agency KAM: Kenya Association of Manufacturers KEBS:

Kenya Bureau of Standards KEPI: Kenya Expanded Programme on Immunization KIPPRA: Kenya Institute for Public

Policy Research and Analysis KNH: Kenyatta National Hospital LOCs: Less Organized Countries NIP: National

Implementation Plan NCT: Non Combustion Technology NGO: Non Governmental Organization PCBs: Polychlorinated

Biphenyls PCDD: Polychlorinated dibenzo-p-dioxins PCDF: Polychlorinated dibenzofurans POPs: Persistent Organic

Pollutants PVC: Polyvinyl Chloride SANE: South Africa New Economics (network) SCWO: Super-Critical Water

Oxidation TCDD: 2,3,7,8 – tetrachlorodibenzodioxin TEQ: Toxic Equivalency Quotient TNT: Trinitrotoluene UNEP:

United Nations Environmental Program U-POPs: Unintentional Persistent Organic Pollutants USEPA: United States

Environmental Protection Agency WHO: World Health Organization
• 7.  EXECUTIVE SUMMARY This report outlines the findings of a study carried out in and around the city of

Nairobi, Kenya by ENVILEAD. The study was carried out between the months of January and March 2005, about the

patterns of practice that are likely to release persistent organic pollutants (POPs) into the environment as

part of the International POPs Elimination Project (IPEP’s) initiatives. The focus of the study was the

practice of medical and municipal waste burning, which research has shown to be a potential source of

unintentional POPs (U-POPs). The study’s objective was to investigate the anatomy of this practice, identify

the key issues involved and make recommendations for the way forward. It was established that burning is the

dominant method of waste disposal in the city, and this is done through industrial incinerators and in the open

air. The main reason for this preferred method of disposal is its convenience in the absence of a functioning

system of waste management (by the City Council) and in the absence of adequate legal guidelines on the disposal

of solid waste by the government. This practice is however also associated with several other factors such as

lack of awareness on the part of the public, economic pressures and the general paucity of administrative

capacity in Less Organized Countries (LOCs). The study was able to establish that the area around the Dandora

dumpsite, the city’s biggest waste burning site, is highly contaminated with POPs. This was established from

the results of U-POPs levels in eggs sampled from the site in a different study. There is also a high likelihood

of other sites, such as the Kenyatta National Hospital (KNH) incinerator, whose maximum temperatures range

between 600°C and 700°C and has no Air Pollution control Devices (APCD), and open-air burning site and

Kitengela open burning site being U-POPs hotspots. The study came up with the following key recommendations for

the way forward: ¾ Additional research needs to be undertaken in order to gather more detailed information

regarding this pattern of practice. Among the additional research required is in the area of relationship

between the socio-economic dynamics and the practice, quantification of the levels of dioxin (as well as other

organic pollutants and heavy metals) emissions from the identified sites, and establishment of the impacts of

the same on public health; ¾ The legal framework for the safe disposal of solid waste, based on Best Available

Techniques (BAT) and Best Environmental Practices (BEP), should to be addressed; ¾ The plastics industry, as a

major contributor of difficult-to-manage waste, needs to be fully engaged in the search for solutions in the

city’s waste management programme; ¾ Greater effort should be placed in the development of alternative

technologies 1 for safe waste disposal, which should be affordable and sustainable;
• 8.  ¾ A popular appreciation of the science of ecology needs to be created in the country, as a means of

ensuring sustained grassroots support for environmental conservation efforts. INTRODUCTION Background Just as

the generation of waste involves a complex interplay of social, cultural, economic and technological processes,

the proper management of waste cannot be divorced from the same processes. While it is necessary, for conceptual

purposes, to view waste management as a clear and distinct category of activity in society, in practice any

successful waste management strategy has to address such diverse issues as patterns of consumption, incentive

systems (the economics of waste management), waste handling technology, and legal frameworks. In its broadest

sense, the issue of waste management is an aspect of the search for sustainable development strategies. This

report seeks to provide an overview of the critical issues regarding the management of municipal and medical

waste in Nairobi, especially in respect of the potential danger of generating unintentional POPs (U-POPs) in the

process of burning such waste. The study’s broader objective is to assist in the development of a comprehensive

waste management strategy for the city and other urban areas in the country, in the context of the provisions of

the Stockholm Convention on Persistent Organic Pollutants (POPs). Annex C of the Stockholm Convention,

identifies waste incinerators, including co-incinerators of municipal, hazardous or medical waste or of sewage

sludge, as source categories with high potential to release U-POPs into the environment. Municipal and medical

waste was selected for study because of its large quantity as a percentage of the total waste generated1, and

the complex nature of issues involved in the proper management of these two types of waste. Nairobi City Council

(2002) admits that it is unable to manage waste effectively in the city, and of particular concern was the

proliferation of informal medical facilities, some of which are located within residential areas. The

Environmental Management and Coordination Act (1999), is well placed to manage waste, including POPs-

contaminated waste, it gives provisions for setting of standards, licensing of waste disposal sites and control

of hazardous waste. However, lack of enforcement mechanism is the biggest challenge facing waste management in

Kenya (Nairobi City Council, 2002). 2 1 A report by NEMA reveals that Nairobi generates approximately 2000

tonnes of waste per day. Of this, 68% is municipal waste generated from households (East Standard 2004)
• 9.  Kenya as a country is in the process of developing a National Health Care Waste Management Plan. The

National AIDS Control Council has just received funds from the World Bank toward the cost of Kenya’s HIV/AIDS

Disaster Response Project, part of the funds are to be used in the development of a National Health Care Waste

Management Plan (Daily Nation, 2005). The lack of enforcement of the relevant environmental law, among other key

factors, has led to a chaotic situation in which almost anything goes as far as the handling of waste is

concerned. A recent report by KIPPRA on solid waste management in Kenya shows that only 25% of the solid waste

generated daily in the city of Nairobi is currently collected (UNEP 2005). The focus of the study was waste

burning, which any casual observation reveals to be the preferred waste disposal option for the Nairobi

residents, which is a consequence of failure on the part of the City Council, and Government, to institute

organized systems waste handling. The study looked at open air burning types and industrial incinerators.

Burning and POPs Generation Polychlorinated dibenzo-p-dioxins (PCDD) and Polychlorinated dibenzofurans (PCDF),

Hexachlorobenzene (HCB) and Polychlorinated Biphenyls (PCBs) are unintentional persistent organic pollutants

(U-POPs), formed and released from thermal processes involving organic matter and chlorine as a result of

incomplete combustion or chemical reactions. These U-POPs are commonly known as dioxins because of their similar

structure and health effects (Tangri 2003). These U-POPs are both of natural and anthropogenic origin. They

resist photolytic, biological and chemical degradation. They are bio-accumulative, widespread geographically and

are toxic to life. The concentration of U-POPs of anthropogenic origin has greatly increased over the years.

Toxics Link Report (2000) identifies several potential sources of these U-POPs, among them being medical waste

incineration and open burning of domestic waste. According to USEPA estimates, municipal solid waste

incineration and medical waste incineration are among the top sources of dioxins released into the air. They

make up for 1,100gm TEQ/year and 477gm TEQ/year respectively (USEPA 1998). Of all source categories, combustion

sources account for nearly 80% of air emissions. 3
• 10.  4 AIR LAND Waste Incineration Ferrous and Non-Ferrous Metal Production Production of Chemicals and

Consumer Goods* Waste Incineration Uncontrolled Combustion Processes Source: Kenya POPs Inventory Fig. 1:

Comparison of U-POPs emissions from different source categories in Kenya Luscombe and Costner (2003) show how

incinerators endanger public health and the environment in general. They identify the toxic pollutants in

incinerator gases and residues, and enumerate the human health and environmental damage of the various chemicals

in the incinerator releases. Connett (1998) shows how municipal waste incineration is a poor solution to the

waste management problem. He lists the toxic emissions of incineration and shows how dioxins, furans and other

by-products of combustion impact human health and the environment. Objectives of Study The overall goal of the

study was to understand the (social, economic and technological) dynamics of the practice of waste burning in

the city and to find out how this might contribute to the release of U-POPs into the environment. Other critical

issues, such as the public health impact of the pattern of practice, were left for the next phase of the study.

The specific objectives of the study were: i. to assess the extent of waste burning/incineration within Nairobi

ii. to establish the City Council of Nairobi’s role in the prevalence of open burning and incineration as the

preferred methods of waste disposal iii. to identify the location of waste burning/ incineration sites in the

city iv. to find out how chlorine-containing waste (such as PVC plastics) is disposed v. to assess the level of

awareness of the general public about the adverse consequences of waste incineration
• 11.  vi. to examine Government regulatory mechanisms for disposal of chlorine-containing 5 waste vii. to

explore suitable BAT and BEP for waste management in Kenya. Significance of Study Article 5 of the Stockholm

Convention requires parties, Kenya included2, taking measures to reduce or eliminate releases from unintentional

production of POPs. These measures include: i. reduction of annual total releases derived from anthropogenic

sources of U-POPs, with the goal of their continuing minimization and where feasible, ultimate elimination; ii.

the development of an action plan (NIP) by parties. Kenya’s NIP should be ready by 25th December, 2006; and

iii. to promote BEP and incorporate BAT in the NIP. The study’s findings will be incorporated in Kenya’s NIP

of the Stockholm Convention with a view to assisting in the realization of the above measures. METHODOLOGY To

achieve the objectives of this study, both primary and secondary data was used. Primary data comprised local

views, perceptions and opinions related to the waste disposal sites among local community members. Various

Government and other resource persons also provided valuable primary data for the study. The state of the

incinerators and dumpsites as well as the disposal methods were studied through observation by the researchers.

Additional data was gathered through taking photographs of the sites and interviewing workers (where applicable)

at the different sites visited. Secondary data was obtained from both published and unpublished information on

waste burning in Kenya and elsewhere in the world. Previous studies carried out on medical and municipal waste

disposal at the global, regional, national and local levels were reviewed. Descriptive analysis was used to

summarize the collected data. Scope of the Study The study was a preliminary investigation, intended to open the

way for further detailed investigations of the same sites and other similar sites in the country. 2 The

convention came into force on 17th May 2004. Kenya became a party to the convention on 23rd December 2004
• 12.  Preparation for the Study Staff recruitment and training: Two research assistants were recruited and

trained for fieldwork. Stakeholders’ identification: Various stakeholders were identified and approached for

their views on the issue under investigation. These stakeholders included: i. Members of public within Nairobi

ii. Health care professionals iii. The Occupational Health Officer, Ministry of Health iv. National

Environmental Management Authority (NEMA) v. Kenya Association of Manufacturers vi. Major Supermarkets in town

vii. Private waste handlers viii. City Council of Nairobi Locations of Interest For the study of medical waste

management, researchers chose to visit a few health care institutions based in Nairobi. These were: Kenyatta

National Hospital (KNH), Nairobi Hospital, Mater Hospital and Forces Memorial Hospital. For the study of

municipal waste management, the researchers visited the Nairobi City Council’s dump site at Dandora as well as

several residential estates in Nairobi including: Jericho, Kariobangi, Huruma, Ngomongo, Baba dogo, Muthurwa,

Shauri moyo, Kimathi, Buruburu, Lucky Summer and Korogocho all in Eastlands; Westlands, Kangemi, Uthiru and

Kikuyu along Waiyaki Way in the West side of Nairobi, and Kitengela to the south of the city. AREA OF STUDY

Nairobi is the largest town in Kenya and also the country’s capital city. It covers an area of 696 km² and

currently has a population of 2,143,254 and population density 3,079 per square kilometre (GoK, 2000). At 1.5 0

south of the equator, Nairobi is a tropical city. Its altitude of 5,000 to 6,000 feet means that the climate is

temperate. Rainfall is divided between two rainy seasons: the short rains fall in November and early December,

and the long rains between April and mid-June. Because it is virtually on the equator, Nairobi has a constant

twelve hours of daylight per day all year round. The sun rises at 6.30 – 7.00a.m and sets again at 6.30 – 7.00

p.m. 6
• 13.  The average day-time temperature varies only slightly throughout the year, ranging from 85°F (29°C) in

the dry season to 75°F (24°C) during the rest of the year. At night, however, temperatures can drop to as low

as 48°F (9°C), though rarely lower. Founded as a last halt before the Highlands for railway engineers in the

early 1900s, Nairobi, which was then just a few shacks and tracks, now covers 696 square kilometres. This figure

includes 120 square kilometres of the Nairobi Game Park and all of Jomo Kenyatta International Airport. Central

Nairobi barely makes up five square kilometres. LITERATURE REVIEW Tangri (2003), notes that despite intensive

scrutiny over many years, much remains unknown about the releases of pollutants from waste-burning activities.

Waste burning produces hundreds of distinct hazardous by-products of which only a handful of them have been

studied thoroughly. Hundreds remain unidentified. Connett (1998) identifies some of the toxic emissions of

incineration. These include: hydrogen chloride, nitric oxide, heavy metals, dioxins, furans and other U-POPs,

fly ash, bottom ash, stack gas, fugitive emissions plus other residues. Polythene bags and plastics, including

PVC items, make up approximately 225 tonnes out of the 2000 tonnes of solid waste generated daily in Nairobi

(KAM, 2003). This represents about 11% of total waste generated daily, while 75% comprises biodegradable waste

that can be composted. The remaining percentage is made up of other recyclable materials such as textiles, metal

and glass making up 2.7%, 2.6% and 2.3% respectively. Open burning of municipal waste is widely used by the

residents of Nairobi, as a means of disposing solid waste. 7 The following facts regarding plastics were

identified from literature: • According to KAM, consumers and end users are the ones who cause environmental

pollution from plastics; • Not all plastics emanate from the local industry, some is imported; • The plastics

sector currently constitutes approximately 150 industries, and has an annual growth rate of 6%; • Currently,

there are about 70 firms that recycle plastics locally; and • Plastics contribute 28% of all cadmium found in

municipal solid waste and approximately 32% of all lead; substances that are highly toxic to humans and the

environment in general.
• 14.  Health Effects Because of the persistent and bio-accumulative nature of dioxins and furans, these

chemicals exist throughout the environment. Human exposure is mainly through consumption of fatty foods, such as

milk. USEPA (2000) in Tangri (2003) notes that 90-95% of human exposure to dioxins is from food, particularly

meat and dairy products. This is because dioxins accumulate in fats and oils3. Their health effects depend on a

variety of factors, including the level of exposure, duration of exposure and stage of life during exposure.

Some of the probable health effects of dioxins and furans include the development of cancer, immune system

suppression, reproductive and developmental complications, endocrine disruption (GAIA, 2003; Connett, 1998;

Luscombe and Costner, 2003). The International Agency for Research on Cancer (IARC) has identified 2,3,7,8 –

TCDD as the most toxic of all dioxin compounds. Environmental and Socio-economic Effects The accumulation of

dioxins and furans in the environment owing to waste incineration activities can reach levels that render

resources unfit for human consumption. Connett (1989), cited in Connett (2003), reports of an incident in

Netherlands where 16 dairy farmers downwind of a huge incinerator in Rotterdam could not sell their milk because

it contained three times higher dioxin levels than anywhere else in Netherlands. Even low doses of dioxins are

very toxic. In 1998, the WHO lowered its recommended Tolerable Daily Intake (TDI) of dioxins from 10 picograms

TEQ per kilogram of bodyweight per day (pg/kg/day) to a range of 1-4 pg/kg/day (Van Leeuwen and Younes 1998).

According to studies conducted in Netherlands, prenatal exposure to typical daily intake of dioxins and PCBs has

effects on neurodevelopment and thyroid hormones. Deficits of up to four points in IQ and increased

susceptibility to infections in 42 month old children exposed to typical daily intakes of dioxins/PCBs were

observed (Patandin 1999). Incineration produces residues that require treatment and/or disposal, most often in a

landfill. Incinerator ash – either as bottom ash or fly ash – is highly toxic. Tangri (2003) observes that

handling of this ash raises serious concerns because workers are often exposed to the ash, sometimes with little

or no protective gear. In India just like in Kenya, Toxic Link (2000), notes that incineration is rudimentary

and most incinerators are single chambered with a smoke stack. Major reasons for dioxin emissions from such

waste incinerators are: 8 3 WHO (1999) points out that dioxins are highly persistent for they breakdown very

slowly and have a half-life in human body of about 7 years.
• 15.  • almost all of them burn mixed waste; • due to lack of enforcement and monitoring, most of the hospitals

are incinerating their plastic waste and also waste treated with chlorinated disinfectant; • many of the

incinerators still have single chambers, in spite of the fact that the installation of double (secondary)

chambers is needed to eliminate volatile substances by better combustion; and • most of the incinerators do not

operate under stipulated temperature. Under the regulations, primary chambers should operate at 850º C and

secondary chambers should operate at 1000º C or more. Tangri (2003) has enumerated several problems particular

to transferring incineration technology to the developing countries. These problems include: • lack of

monitoring – no ability to regularly monitor stack emissions or 9 incinerator ash toxicity; • lack of technical

capacity to test releases – not able to conduct tests for dioxins and other pollutants; • lack of secure

landfills for ash – toxic incinerator ash dumped in, at best, an unlined pit, where it runs the risk of

contaminating groundwater. Access to the ash land not controlled; • corruption4; • shortage of trained personnel

– necessary number of trained Manpower to manage incinerator operations; • budgetary constraints – hinder

maintenance and replacement of key incinerator functions; and • differing physical conditions and lack of

robustness of technology – where incinerator technology imported from the west is not appropriate to the

Southern conditions. Other Pollutants from Incineration In addition to dioxins, polychlorinated biphenyls (PCBs)

and Hexachlorobenzene (HCB), incinerators are sources of other halogenated organic compounds, toxic metals and

greenhouse gases to name but a few5. Toxic metals released from incineration activities include: Mercury, Lead,

Cadmium, Arsenic, Chromium, Beryllium, Antimony, and Manganese. Stanners and Bourdeau (1995), cited in Tangri

(2003), give a worldwide atmospheric emissions estimate of trace metals from waste incineration; this is

summarized in the Table 1 below: 4 Where there is corruption the likelihood of installing substandard equipment

for kickbacks is high. 5 [Blumenstock et al (2000) in Tangri, (2003)].
• 16.  10 Table 1. Worldwide atmospheric emissions of trace metals from waste incineration Atmospheric emissions

from waste incineration Metal 1000 tons/year % of total emission Antimony 0.67 19.0 Arsenic 0.31 3.0 Cadmium

0.75 9.0 Chromium 0.84 2.0 Copper 1.58 4.0 Lead 2.37 20.7 Manganese 8.26 21.0 Mercury 1.16 32.0 Nickel 0.35 0.6

Selenium 0.11 11.0 Tin 0.81 15.0 Vanadium 1.15 1.0 Zinc 5.90 4.0 Source: Stanners and Bourdeau (1995), in Tangri

(2003), page 17 Public Opposition to Incineration Waste incineration is unpopular in many countries. In the USA,

for example, since 1985, over 300 trash incinerator proposals have been defeated or put on hold due to public

opposition, and several large engineering firms have pulled out of the incinerator business altogether (Connett

1998). In Michigan, all but one of the 290 medical waste incinerators in the state closed down rather than

attempt to meet federal emissions limits imposed in 1997 (Tangri 2003). Tangri (2003) reports that in 2001

alone, major incinerator proposals were defeated by public opposition in France, Haiti, Ireland, Poland, South

Africa, Thailand, UK, Venezuela. Even in poor countries such as Bangladesh, public opposition to incinerators

has yielded changes. A proposal by an American company to build a power station which would burn trash shipped-

in from New York City to Khulna in Bangladesh was defeated by public opposition (Connett 1998). In 2000, GAIA

was launched. GAIA members work both against incineration and for the implementation of alternatives Tangri

(2003). Kenya Eggs Study A study in early 2005 on egg-sampling by ENVILEAD and Arnika (under the Dioxin, PCBs

and Waste Working Group of IPEN) found eggs collected around the Dandora dumpsite in Nairobi, Kenya, to have

dioxin levels over 6 times higher than the EU dioxins limits for eggs. In addition, the sampled eggs
• 17.  exceeded the proposed WHO limits for PCBs by more than 4-fold (Fig. 2). It is estimated that the Dandora

open dumpsite handles 803,000 tons of waste per year (National inventory of POPs, 2004). Fig. 2: Mean values

(PCDD/Fs) found in Eggs Sampled from Dandora – Kenya, compared with levels in eggs from other contaminated

sites in the world Source: The Egg sampling report by ENVILEAD and ARNIKA (2005) STUDY FINDINGS Basic Findings

The study made several basic findings that will be important in the search for waste management solutions in

Nairobi and elsewhere in the country. Among these are: a. The nature of consumer demand: In the Kenyan market,

where more than half the nation’s population lives below the poverty line, plastic constitutes a very

attractive option as the material of choice for numerous domestic, medical and industrial products. The business

organizations that researchers were able to visit, such as supermarkets and plastics’ manufacturers, confirmed

cost attractiveness of plastic to local consumers. There is therefore a basic market-based challenge to the

problem of waste management, 11
• 18.  comprising rational economic action linking consumers, manufacturers and traders. b. Legal framework and

administrative capacity: Waste is a necessary outcome of any production and consumption process. But in the real

world, the quantity of waste a society produces has implications on the resources the society requires for

managing the same. It is therefore necessary, especially where resources for waste management are very limited,

to institute measures that reduce the overall quantity of waste generated, with a special focus on products such

as plastics that are especially problematic in safe disposal. Proper waste management requires enforcement of

the existing legal provisions. The study established that Kenya has a sound legal framework (EMCA, 1999) for

guiding the utilization of BEP and BAP in waste management. However, the law is not enforced to the letter. It

was established that most health institutions, including KNH, do only rudimentary segregation of waste. Of the

hospitals visited, only Nairobi Hospital and Mater Hospital had a thorough waste segregation system. The

existence of suitable legal guidelines is however only one part of the requirements for a proper system of waste

management. The other part has to do with administrative capacity to enforce such law. The study established

that the City Council, which has the legal responsibility for managing solid waste in the city, has an alarming

lack of administrative capacity for this role. For example, the Dandora dumpsite, which is supposed to be under

the management of the Council, is a veritable health and ecological time-bomb for Nairobi and its environs. 12

General Findings The following were the study’s general findings: I. The level of public awareness on the

adverse effects of waste burning activities and U-POPs among the residents is pathetically low. A majority of

the study’s respondents could not link any ill-health to incineration activities and U-POPs as a major health

threat; II. All the main health institutions in Nairobi such as KNH, Nairobi Hospital, Mater Hospital, and

Forces Memorial Hospital either have their own incinerators or hire the services of one. In addition however

some of the institutions are involved in open air burning. For instance, the biggest hospital in Kenya (KNH)

burns some of its waste mostly consisting paper, plastics, clothing etc – usually considered to be of low risk

– in an open pit in front of the incinerator;
• 19.  III. Open burning of municipal waste is widely used by the residents of Nairobi, as a means of disposing

solid waste. In a survey of two blocks’ area around Pumwani in Eastlands, Nairobi, eight small open air waste

burning sites were counted, all of which had assorted plastics; IV. The incinerator at Kenyatta National

Hospital, which is situated just a few metres upwind from the residential homes of low cadre staff of the

hospital and medical students’ hostels, operates at temperatures between 350°C and 650°C and has no APCD. The

incinerator emits noxious fumes that are carried to the homes and hostels, causing considerable distress to the

residents; 13 Plate: Kenyatta National Hospital open dumpsite: At the background are hospital staff quarters V.

The dioxin-rich bottom ash from incinerators around Nairobi is normally deposited at the Dandora dumpsite; VI.

The Dandora dumpsite constitutes the most prominent, and challenging, manifestation of problems arising out of

the waste-burning pattern of practice in Nairobi; VII. The level of waste recovery, reuse and recycling is

grossly inadequate. For example, only 1% of plastics are recycled (KAM, 2003); VIII. The legal framework

regulating waste burning activities is sound. However, the enforcement of the law is weak; and IX. The Nairobi

City Council lacks the capacity to manage the waste generated in the city effectively; Table 2 below shows a

number of major companies in Nairobi that dump their mixed waste in Dandora dumpsite. It is therefore necessary

for the private sector to be involved in the search for waste management solutions as they are major

contributors of waste.
• 20.  14 Table 2. Waste disposal methods for various major companies in Nairobi Company/organization Contents

of waste Estimated weight in tons/month Method of disposal Jomo Kenyatta International Airport (JKIA) Mixed

aircraft waste 300 Waste dumped in Dandora dumpsite Kenya Revenue Authority staff quarters Household/domestic

waste 285 Waste dumped in Dandora dumpsite Kenya Shell Company (Shell & B.P. House) Commercial waste 60 Waste

dumped in Dandora dumpsite Kenya breweries Household and commercial 200 Waste dumped in Dandora dumpsite NAS

Airport Services Food & food packaging 350 Waste dumped in Dandora dumpsite Swan Industries Commercial &

industrial waste 350 Waste dumped in Dandora dumpsite Kenya Shell aviation Stations Commercial & food waste 72

Waste dumped in Dandora dumpsite Orbit Chemicals Polythene sheet cuttings & plastic drums – • Plastics recycled

• Paper & drum sold • Other waste dumped near Athi River. Source: Kenya National Inventory of POPs (2004)

Findings on Health Effects and Exposure Pathways The study was not able to carry out a comprehensive

investigation into the health consequences of the incinerators and open air burning sites visited. There were

however complaints about chest complications and serious smoke irritation for those living downwind from the KNH

incinerator, as well as from those living around the Dandora dumpsite. The main exposure pathways for any

contamination from the sites visited in the study are: • Inhalation of the pollutants-infested smoke and fly ash

carried across by the wind; • Consumption of animal products such as meat, milk and eggs from animals feeding

within and around the sites; • River water from a river flowing next to the Dandora dumpsite and serving

numerous people downstream on its way to the Indian ocean; and • Ground water reserves affected by leachate from

the Dandora dumpsite. It is worth noting that some categories of people are at higher risks of exposure to

dioxins than others. These include children, infants, some workers, people
• 21.  who eat fish as a main staple of their diet and people who live near dioxin release sites. CHEJ (1999)

observes that these groups are likely to be exposed to at least 10 times as much dioxin as the general

population. CHALLENGES TO THE STOCKHOLM CONVENTION: RESPONSIBLE PARTIES – KENYA POPs and Scientific Development

The existence of POPs worldwide is one of the best illustrations of the Frankenstein nature of scientific and

technological development. While progress in science and technology has greatly increased humanity’s power to

modify its environment for its benefit in ways previously unimagined, the same progress has created threats of

similar magnitude to humanity and the planet as a whole. The last century has been called an “era of chemicals

”, where more than 18 million chemicals were synthesized and about 100,000 of them came into commercial use

(Toxics Link 2000). It was not until the publication of Rachel Carson’s book, “The Silent Spring”, that the

general public’s attention was drawn to the dark side of the chemical revolution. The Stockholm Convention is

in many respects an effort to interpret Carson’s thesis into social action. The broader framework of the

Stockholm Convention’s objectives should be viewed as completing the loop of knowledge in chemistry, through

developing the institutional capacity to control the real and potential danger of chemicals. The realization of

the Stockholm Convention’s mandate would be the coming of age of the chemical revolution. As Isaac Asimov put

it, “The saddest aspect of life right now is that science gathers knowledge faster than society gathers wisdom.

” POPs and Less Organized Countries The above-outlined problems are relevant to Kenya and other Less Organized

Countries (LOCs). In addition though, LOCs face several challenges that are unique to their special

circumstances. Among these is the sheer pressure of survival priorities. The immediacy of hunger, debilitating

disease, social and economic dislocation, and other such concerns that affect large sections of society in LOCs

is such that an issue like that of POPs is unlikely to find a place at the fore of the national agenda. The

psychological environment of desperate social and economic circumstances has a tendency to promote fatalism and

other behavioural tendencies that are not conducive to organized long term action based on people’s faith in

their ability to 15
• 22.  influence the course of their destiny. A good illustration of this is the challenge that the behaviour-

change message in the HIV/Aids campaign in Africa has faced, despite the powerful and very public nature of the

AIDS pandemic. Galvanizing community action for the POPs eradication campaign shall require very well thought-

out strategies, and competent leadership. In addition to the problem of priorities, LOCs face a big challenge of

organizational capacity in the campaign against POPs. The low levels of organizational capacity in LOCs

translate to challenges in administrative competence, financial resources, technological resources, monitoring

ability and other such key requirements for an effective POPs eradication campaign. With sufficient support

there are specific organizations within LOCs that can make a real and positive difference in such a campaign. In

the long run, in order for any major campaign such as that of the Stockholm Convention to be truly successful,

the campaign has to be done in the context of an overall sustainable development strategy. Such a campaign would

have implications going beyond specific issue of POPs. For example, a successful POPs elimination campaign may

need to involve fundamental changes in the agricultural sector, waste management approaches and legislation (as

well as enforcement mechanisms) dealing with chemical safety in general. Such an agenda requires very

considerable organizational capacity both within the public sector and civil society, which is the big challenge

for LOCs. 16 The crippling nature of incinerator debt. Capital costs of incinerator projects for instance, drain

the resources of LOCs and increase their indebtedness through the need for foreign financing to build and

maintain such facilities not forgetting continued reliance on manufactured products from other nations. Instead

of allowing nations to develop new industries and reduce foreign imports, incinerators transform these resources

into smoke and ash. Analysis by a local environmental group in Miljoteknik Zychlin, Poland revealed that the

debt for the US$5million proposed incineration facility would have taken the community of 14,000 residents over

100 years to repay! – Brenda Platt (2004)
• 23.  The Environment and Economy While the growth of science and technology has an important bearing on the

dangers to the environment that the Stockholm Convention and similar other Conventions seek to counter, it is

the market economy that provides the framework within which the power of science and technology can be projected

into the world. As is the case with science, measuring economic development in a one-dimensional manner, purely

in terms of (monetary) returns on investment and not the overall impact of the concerned economic activity on

society and the natural environment, is unsatisfactory. In economics, problems arising from the undesirable

consequences of economic activity that are not captured in the pricing structure of products are called negative

externalities. Negative externalities are those situations arising from economic activity that create costs to

the society that are not reflected in the balance sheets of the concerned businesses. For example, in pricing

its products, a given organization may include the cost of labour, energy, marketing, finance and other such

inputs but leave out the cost (borne by the society) of medical and other costs directly attributable to harmful

effects of the organization’s products. POPs ought to be treated as an aspect of the problem of externalities

in economic theory, and solutions sought within the framework of approaches developed in the discipline of

economics to deal with this problem. ALTERNATIVE PRACTICES Other than incineration, landfilling and composting

are alternative methods of waste disposal used in the country, although to a minimal extent. More often than

not, individuals and community-based organizations (CBOs) are the ones involved in composting biodegradable

waste mostly on a commercial basis. Landfilling is commonly practiced in the smaller health facilities such as

District hospitals, health centers and clinics, but most of these landfills are not built to standard. Other

landfills in the country are situated in Mombasa and Nakuru for municipal waste disposal, built through the

assistance of Agence Francaise de Développement (AFD), a French operation that works through the government.

Alternative Technologies for Hazardous Waste Treatment In developed countries, non-incineration technologies for

hazardous waste treatment are available; these include several processes summarized by Crowe and Schade (2002)

in Tangri (2003) in Table 3. 17
• 24.  18 Table 3. Non-Incineration technologies for hazardous waste treatment Technology Process description

Potential Advantages Current Uses Base Catalyzed Dechlorination Wastes reacted with alkali metal hydroxide,

hydrogen and catalyst material. Results in salts, water and carbon. Reportedly high destruction efficiencies. No

dioxin formation. Licensed in the United States, Australia, Mexico, Japan, and Spain. Potential demonstration

for PCBs through United Nations project. Biodegradation (in enclosed vessel) Microorganisms destroy organic

compounds in liquid solutions. Requires high oxygen/nitrogen input. Low temperature, low pressure. No dioxin

formation. Contained process. Chosen for destruction of chemical weapons neutralent in the United States.

Potential use on other military explosive wastes typically used for commercial wastewater treatment. Chemical

Neutralization Waste is mixed with water and caustic solution. Typically requires secondary treatment. Low

temperature, low pressure. Contained and controlled process. No dioxin formation. Chosen for treatment of

chemical agents in the United State. Electrochemical Oxidation (Silver II) Wastes are exposed to nitric acid and

silver nitrate treated in an electrochemical cell. Low temperature, low pressure. High destruction efficiency.

Ability to reuse/ recycle process input materials. Contained process. No dioxin formation. Under consideration

for chemical weapons disposal in the United States. Assessed for treatment of radioactive wastes.

Electrochemical Oxidation (CerOx) Similar to above, but using cerium rather than silver nitrate. Same as above;

cerium is less hazardous than silver nitrate. Demonstration unit at the University of Nevada, USA. Under

consideration for destruction of chemical agent neutralent waste. Gas Phase Chemical Reduction Waste is exposed

to hydrogen and high heat, resulting in methane and hydrogen chloride. Contained, controlled system. Potential

for reprocessing by-products. High destruction efficiency Used commercially in Australia and Japan for PCBs and

other hazardous waste contaminated materials. Currently under consideration for chemical weapons destruction in

the United States. Potential demonstration for PCB destruction through United Nations project. Solvated Electron

Technology Sodium metal and ammonia used to reduce hazardous wastes to salts and hydrocarbon compounds. Reported

high destruction efficiencies. Commercially available in the United States for treatment of PCBs. Supercritical

Water Oxidation Waste is dissolved at high temperature and pressure and treated with oxygen or hydrogen

peroxide. Contained, controlled system. Potential for reprocessing by-products. High destruction efficiencies.

Under consideration for chemical weapons destruction in the United States. Assessed for use on radioactive

wastes in the United States. Wet Air Oxidation Liquid waste is oxidized and hydrolyzed in water at moderate

temperature Contained, controlled system. No dioxin formation. Vendor claims 300 systems worldwide, for

treatment of hazardous sludges and wastewater Source: Crowe and Schade (2002) in Tangri 2003, page 62
• 25.  From the study, we found out that none of the above stated technologies is used in Kenya. RECOMMENDATIONS

The study proposes the following measures: I. Additional studies should be undertaken to acquire additional and

more detailed information about the waste burning and incineration and its consequences in Kenya. This includes

analysis and quantification of U-POPs 19 in biotic and abiotic systems and their impact on public health; II. In

line with Article 10 of the Stockholm Convention, Public information, awareness and education on U-POPs should

be carried out, for a well informed citizenry will make a big contribution on efforts geared towards

elimination/ and reduction of the U-POPs. Proper education and training in waste management must be offered to

all stakeholders in a way best suites their respective circumstances and builds their understanding and changes

their behaviour accordingly; III. Subsidiary legislation addressing waste incineration should be enacted under

the Environmental Management and Coordination Act (1999). This should guard against indiscriminate burning of

waste; IV. A buy-back scheme for used plastics should be instituted. This should not be difficult to do because

the plastics industry is willing to manage waste sites in all major population areas where the manufacturers

will buy plastic waste from the general public. Such collection centres would be set up and fully funded by the

same manufacturers (KAM, 2003); V. A national campaign, financed by the plastics industry should be launched,

giving the public exact details of where to take their plastic waste for recycling. Supermarket chains should

also be encouraged to allocate bins in their branches where customers can bring back plastic carrier bags and

other items for recycling; VI. A zero waste program should be introduced immediately and eventually developed

into policy. It has been tried and tested in other countries and it is rapidly gaining acceptance the world

over. Within the zero waste program, there should be a rigorous national campaign lobbying for an end to open

burning and incineration of waste and in particular waste that contains PVC; VII. Waste segregation at source

should be the standard practice in all households and medical facilities. The current waste management practice

in which waste materials are all mixed together as they are generated, collected, transported and finally

disposed of should be stopped. If proper segregation is achieved through training, clear standards, and tough

enforcement, then resources can be turned to the
• 26.  management of the small portion of the waste stream needing special treatment6; VIII. A policy of

Extended Producer Responsibility (EPR) should be put in place. The basic concept of EPR is that firms must take

responsibility for their products over their entire life cycles (Tangri 2003). This is in harmony with the

“Polluter Pays” principle of the Stockholm Convention; IX. Statutory regulations to force manufacturers to use

at least 15% recycled plastics in their non-food products should be imposed. In this way demand for plastic

waste will be created therefore leaving little if anything for disposal. Since to install capacity for recycling

is expensive however, the plastics’ industry should be given tax incentives for the exercise; X. Cleaner

production based on a circular vision of the economy should be encouraged. Cleaner production aims at

eliminating toxic wastes and inputs by designing products and manufacturing processes in harmony with natural

ecological cycles (Tangri 2003); XI. Product bans ought to be made for certain categories of manufactures.

Products and packaging that create waste problems (non-recyclable or hazardous- such as polyvinyl chloride –

PVC) for the society should not be allowed to enter into the economy. Bans are appropriate for materials that

are problematic at every stage of their lifecycles (Ryder 2000 in Tangri 2003); XII. Infrastructure for the safe

disposal and recycling of hazardous materials and municipal solid waste should be developed. Approximately 50%

of all waste is organic, and can therefore be composted. Another large segment of the remainder can be recycled,

leaving only a small portion to be disposed. The remaining portion can then be disposed through sanitary

landfills, sewage treatment plants, and other technologies. To ensure continuity and clarity in the proposed

recommendations, clear plans and policies on management and disposal of waste should be developed. This should

be followed by integrating them into routine workers’ training, continuing education and evaluation processes

for systems and personnel. Involvement of all stakeholders including public interest NGOs and other civil

society in developing and implementing a waste management scheme is necessary for successful implementation of

the Stockholm Convention. 20 6 Platt and Seldman (2000), show how comprehensive waste composting, reuse and

recycling programmes generate ten times as many jobs per tonne of municipal waste as do incinerators.
• 27.  CONCLUSION The burning of waste as a method of waste disposal in Nairobi clearly constitutes a pattern of

practice which contributes to the release of U-POPs into the environment. As suggested by the term “pattern”,

this practice is a complex process involving economic factors, people’s attitudes, governance issues and other

such components. It is a matter requiring detailed study and much creative effort to address satisfactorily. In

its broader context, the issue of waste management is an aspect of the challenge of sustainable development.

Inability to deal with waste in such a way as it does not harm people or the environment is an indication of an

ecologically unsustainable system of social organization. The challenge of sustainable development is to design

an economic and technological system that is in harmony with ecological principles. The current dominant system

of economic and technological organization in the world is powerful and in many respects very successful. It is

however not a sustainable system and in fact constitutes a veritable danger to the survival of life in the

planet. There is need to review some of the system’s most basic organizational principles, as a way out of the

dangerous trajectory it has set for humanity. The poorly formed social structures and systems in LOCs,

especially in sub- Saharan Africa, may ironically make the best hope for the development of fresh, ecologically

sustainable development approaches. LOCs have the opportunity to build their houses with the special benefit of

a wealth of knowledge of the successes, and follies, of the past. LOCs should proceed to build their societies

with energy and enthusiasm, but with the clear understanding that humanity cannot stand outside, or above, the

ecological order that sustains all other life in the planet. 21
• 28.  REFERENCES 1. Alcock R., Gemmill R. and Jones K. (1998), “An updated PCDD/F atmospheric emission

inventory based on recent emissions measurement programme” in Organologen compounds, Vol. 36, pp 105 -108 2.

CHEJ (1999) America’s Choice; Children’s Health or Corporate profit. The American People’s Dioxin Report by

Center for Health, Environment and Justice – www.essential.org/cchw 3. Connett Paul (1998) “Municipal Waste

Incineration: A poor solution for the 21st Century” 4th Annual International Management Conference. Waste – to

– Energy, Nov 24 -25, 1998, Amsterdam. 22 4. Crowe Elizabeth and Schade Mike (June 2002) Learning Not to Burn:

a Primer for Citizens on Alternatives to Burning Hazardous Waste. 5. Daiy Nation, July 15 2005” National AIDS

Control Council: Request for Expressions of Interest Consultant Services- the Kenya HIV/AIDS Disaster Response

Project”` 6. East African standard, June 6 2004: ”Filth is choking up Kenya and pushing the country to the

blink of an Environmental catastrophe” Nairobi. 7. Government of Kenya, 1999, Environmental Management and

Coordination Act (EMCA),1999, Nairobi: Government printers. 8. Government of Kenya, 2000, National Human

Population and Housing Census 1999, Nairobi: Government printers. 9. IPEN, Arnika and ENVILEAD, 2005:

Contamination of Eggs from the Sorroundings of Dandora Dumpsite by Dioxins, PCBs and HCBs; ”Keep the Promise,

Eliminate POPs” campaign reports. 10. KAM (Plastic Sector) Position Paper to NEMA, July 2003. 11. Kenya

National Inventory of Persistent Organic Pollutants under the Stockholm Convention, final report (Unpublished).

12. Luscombe Darryl and Costner Pat, (1998) Technical Criteria for the Destruction of Stockpiled Persistent

Organic Pollutants; Greenpeace International Science Unit. 13. Nairobi City Council 2002: A Survey on medical

Waste in Nairobi (unpublished report) 14. Patandin S. (1999) Effects of environmental exposure to

polychlorinated biphenyls and dioxins on growth and development in young children, A prospective follow-up study

of breast-fed infants from birth until 42 months of age. Thesis, Erasmus University, Rotterdam. 15. Stanners D.

and Bourdeau P. (1995) Europe’s Environment, The Dobris Assessment, Copenhagen: European Environment Agency.

16. Stockholm Convention on Persistent Organic Pollutants (POPs) (www.pops.int) 17. Tangri Neil (2003), Waste

Incineration: A Dying Technology: Essential Action for GAIA: www.no-burn.org 18. Toxics Link (2000) Trojan

Horses: Persistent organic Pollutants in India. Delhi: Toxics Link.
• 29.  19. UNEP (Nairobi): Plastic bag ban in Kenya proposed as part of the New 23 waste strategy” Press

release February 23, 2005. 20. University of Nairobi Enterprises and Services Limited (UNES): National Inventory

of Persistent Organic Pollutants (POPs) under Stockholm Convention. 2004. 21. USEPA (1998) The Inventory of

Sources of Dioxins in the United States, USEPA, Office of Research and Development, EPA/600/P-98/002Aa. External

Review Draft, April. 22. USEPA, Dioxin: Summary of the Dioxin Reassessment Science, 2000a. 23. USEPA (2000)

Exposure and Human Health Reassessment of 2,3,7,8- Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds,

Part I: Estimating Exposure to Dioxin Like Compounds, Volume 2: Sources of Dioxin Like compounds in the United

States, Draft Final Report EPA/600/P-00/001Bb, (http://www.epa.gov/ncea ). 24. Van Leeuwen F and Younnes M.

1998, WHO revises the TDI in for dioxins. In organohalogen compounds, Vol. 38, pp 295 -298; 1998.
• 30.  24 ANNEX 1: MAPS 1. Map of Kenya Note Nairobi’s position and the other major towns (the red dots) which

could have similar environmental challenges.
• 31.  25 2. Map of Nairobi The brown patch at the center of White square is the heart of Nairobi. Note the

Nairobi River, which joins the Athi River on the way to the Indian Ocean.
• 32.  26 ANNEX 2: PLATES 1. Dandora dumpsite This is the Western edge of the Dandora dumpsite. The houses in

the foreground are part of the Korogocho slums. In the background is lucky-summer estate. The dumpsite is

surrounded by densely populated residential quarters. 2. Kitengela Town Dump Notice the persons in the way of

the smoke. These are scavengers at the site who work in this environment on a daily basis.
• 33.  27 3. Waste content of the dumpsites Typical contents of dumpsites around Nairobi. Notice the high

proportion of plastics. 4. Medical Waste awaiting incineration (KNH) The maximum temperature of the hospital’s

incinerator on the right is 700ºC
• 34.  28 5. The Nairobi river (foreground) flowing past the Dandora Dumpsite Note the mountain of burnt ashes

in the background

 

by: http://www.slideshare.net/anhtungdx/envilead-2005-a-study-on-waste-incineration

Medical Waste Incinerator: Essential Medical Waste Disposal Services Provided By Meda Send

Medical Waste Removal Companies Medical Waste Service Suggestions There are different types of wastes that people need to be conscious about in order to avoid exposure to this waste that may cause health illnesses and diseases. One of the most dangerous types of waste that people need to get rid of is hazardous wastes. These are the type of wastes that completely pose potential or substantial threats to people particularly to public health and to the environment. These wastes are also known as special wastes since they cannot be quickly disposed compared to other types of wastes.

Thus, in order to relieve all the worries of the people regarding this matter Meda Send offers hazardous waste disposal that could help medical facilities. They are providing cost-effective as well as safe services that could easily and effective disposed your hazardous waste. They are very consistent in giving safe as well as environmental-friendly services to the people in order to disposed common existing hazardous waste in medical facilities. They are the best company that would lend your medical facility hazardous waste disposal plan that would be effective towards your aim for a healthy and safe environment for the people.
Pathological Waste Definition

Hazardous wastes are those chemicals and medicines that are toxic and infectious that can effectively affect the health of the people upon exposed. These may also be laboratory medicines which are used by doctors in aid for harsh and severe diseases and illnesses of patients. Disposing these hazardous waste would not be a difficult task since Meda Send would be your help in this matter. They are going to provide medical facilities containers in colored red covered by red plastic where they can put their hazardous wastes. They are also giving medical facilities adequate time in collecting all the hazardous wastes that may be found in their place. This is essential before allowing the pickup truck of the company to get your collected hazardous wastes.

They are very much concern on the health of the people inside and outside of their medical facility hence they wanted to make sure that they would not be exposed and be inflicted with the toxins and other harmful chemicals coming from this hazardous waste. Since Meda Send is always available, medical facilities would always have an assurance of a quick disposal of waste particularly when there are already huge quantity of hazardous waste in their place.
medasend.com Sharps

Hazardous waste disposal could be an easy task for all medical facilities particularly if they are going to seek any of the waste management disposal services of Meda Send. Don’t miss the opportunity to avail any of the services offered by Meda Send for a healthy and safe environment. This would always guarantee that you will have a healthy environment that is free elements that pose health risks.

Most people know that there is a large amount of medical wastes that are being produced by most of the medical facilities like hospitals, clinics and many other health facilities each day. These wastes need to be properly collected, transported, segregated, and disposed to its proper places and condition. Although some medical facilities are considered to be proficient and knowledgeable in disposing their wastes, they still need to seek a company that could guide them and help them on how they are going to dispose their waste properly particularly when instances that they can no longer handle proper medical waste in their place.

That is why Meda Send would be an effective answer to what medical facilities are greatly in need of in terms of their wastes and garbage each day. They are one of the highly recognized companies all over the world that is highly specialized when it comes to healthcare and proper medical waste disposal. They are not just aiming to help people in managing their waste sine they also aim to provide a healthy community free from diseases and illnesses that may be due to improper disposal of waste.
medasend.com Posts

Meda Send is very committed and devoted in giving waste services to all the people. They can effectively handle medical disposal needs of medical facilities with their speed as well as accuracy. They are very effective in providing the people waste management services which aims for a healthy environment not only covered by the people who are inside the medical facility but also with all the people in the community. With the help of medical waste disposal services of the company, people are guided with the proper waste management they need to do. This is not only good for nurses and doctors but for all the people as well.

They are given greater chance to be well-equipped with the proper segregation of waste. This is very important to get rid of risk since these wastes are considered to be harmful to people and to the environment. They are taught on the right place where to put their waste. This is through allowing them to segregate their waste in a red plastic. Medical waste disposal of the company is known to be very effective and efficient since they are providing consistent type of truck pickup grid making the people feel at ease in scheduling medical waste pickups. They are also available 24/7 hence they make sure that waste compliance needs of the people are given high importance that the company is not taking for granted.

So, for medical facilities that are rendering services to large or small group of people, Meda Send could be one of the best companies that could give you safe and healthy environment that could cater the needs of the people towards a healthy and safe community to live.

by: http://ourbdspace.com/blog/34552/medical-waste-incinerator-essential-medical-waste-disposal-services-provide/

Ta Qali pet cemetery/ crematorium exempted from Environmental Planning Statement

The Malta Environment and Planning Authority has exempted the application for the construction of a pet cemetery and crematorium from an Environmental Planning Statement, according to a notice in Friday’s issue of the Government Gazette.

In exempting a project from an EPS, Mepa has determined that the proposal is unlikely to have any significant environmental impact and the Director of Environment Protection agrees that the proposal does not require such a statement, since the Project Description Statement (PDS) presented as part of the application “has considered the environmental issues in a sufficient manner such that the preparation of an EPS would not add any new information and Mepa has all the necessary information to determine the application”.

The dog and cat cemetery is planned for a site at Ta’ San Ġakbu in Ta’ Qali. According to the notice, the proposed development will include an incineration facility fuelled by gas. This will operate at a temperature in excess of 1,100°C, ensuring complete combustion and no emission of hazardous gases.

According to Mepa, no significant impact is envisaged during the construction phase, given the scale of the proposed buildings.

“With respect to the operations of the incinerator facilities, and given that it is expected the facility will be strictly processing animal carcasses with no risk of infection, no significant environmental impact is envisaged. Furthermore, operations are unlikely to lead to any significant emissions to air, so impact will be of little or no significance, due to the incinerator’s specifications and secondary burning process.”

There is no concern over the generation of waste, either. As Mepa explained: “The impact arising from the amount of waste generated during the construction phase is not considered significant. The pet cemetery is not likely to have a significant environmental effect, given that no solid waste will be generated. Any ash remains would need to be disposed of in line with the provisions of the Waste Regulations, 2011.”

Although construction-related spillages may result from the project, Mepa has found that “these are expected to be of minor or no significance given that any spillages can be mitigated through the proper application of appropriate mitigation measures identified in the Environmental Management Construction Site Regulations, 2007”.

It adds: “Impacts during operation are expected to be of little or no significance given that risks of contamination of land or water from such releases are likely to be remote.”

According to a planning application presented by the Environment Ministry, a 1,700 square metre agricultural field has been identified for the development of a dog and cat cemetery that will provide niches for the ashes of 17,000 dogs and cats.

The provision of an animal cemetery was proposed in the Labour Party’s manifesto before the last general election.

by: http://www.independent.com.mt/articles/2014-10-22/local-news/Ta-Qali-pet-cemetery-crematorium-exempted-from-Environmental-Planning-Statement-6736124171

Incinerator Diesel Fired 150kg/hr

INCINERATOR, DIESEL.

CAPACITY : Burner 150 kg/hr.

Quantity : Two [2] with complete accessories.

Types of wastes being used: GENERAL WASTE

The  machines will be certified for operation from PME after passing site investigations.

The technical details we care about are:

–          Capacity (burning capacity of waste per hour). 150kg/hour.

–          Build materials, 5mm High quality mild steel construction ; 100 mm high quality refractory lining.

–          High Temperature paint finish

–          Up to 150 KG/Hrs.

–          Consumption of power and fuel.

–          Ash removal odor

–          Automatic curing process temperature controlled chamber.

–          Secondary chamber

–          Others.

Veolia to store Ebola ash until ‘the politics settle down’

Ebola

PORT ARTHUR – Veolia Environmental Services will temporarily store the ash from Ebola virus-contaminated material that it incinerated late last week at its Port Arthur site because a hazardous waste landfill in Louisiana won’t accept it as long as politicians there contend it might be unsafe, Veolia’s general manager said on Monday.

“Waste Management asked us not to send it at this time,” Mitch Osborne said, referring to the Chemical Waste Management landfill in Carlyss, La.

“The contaminants were destroyed. It’s in safe storage where it will continue to be. It’s not urgent to send it out. We’ll wait for the politics and the emotion to settle down,” Osborne said.

Osborne said other waste was burned with the virus-contaminated material, adding it’s not possible to sort through the resulting ash and isolate what was from the Dallas apartment and the other waste Veolia accepts daily.

Veolia burned 140 drums this past Thursday and Friday that contained contents from the apartment where Thomas Eric Duncan, infected with Ebola in West Africa, had lived immediately before hospitalization in Dallas.

Duncan died last week, and his remains were cremated on Friday.

Veolia accepted the six truckloads of material from Duncan’s apartment on a contract with the Texas Department of State Health Services for incineration.

On Monday, Louisiana’s attorney general declared he would seek a restraining order to prevent shipment of the ash residue to the Carlyss landfill.

The New Orleans Times-Picayune reported Louisiana Attorney General Buddy Caldwell said in an email that, “It is absurd to transport potentially hazardous Ebola waste across state lines. This situation is certainly unprecedented, and we want to approach it with the utmost caution. We just can’t afford to take any risks when it comes to this deadly virus.”

The federal Centers for Disease Control and Prevention’s guidelines say, “Ebola-associated waste that has been appropriately inactivated or incinerated is no longer infectious.”

Texas health authorities and officials with the CDC supervised the decontaminating, bagging and shipping of the material from the Dallas apartment to Veolia, where the state and federal officials also observed the transfer from the trucks into the Veolia incinerator.

by: http://www.beaumontenterprise.com/news/article/Veolia-to-store-Ebola-ash-until-the-politics-5821450.php

SWRHA chairman: Delay in payment causes medical waste back-up

Chairman of the South West Regional Health Authority (SWRHA) Dr Lackram Bodoe said a back-up of medical waste at the San Fernando General Hospital had to do with a delay in payment to a contractor and not the malfunctioning of the incinerator.

Responding to complaints about the dangers posed by the accumulated medical waste, which included amputated limbs, needles, and bloodstained items, Bodoe assured that the $9 million incinerator installed last year was functioning well.

He said it was allowed to accumulate because daily paid workers refused to work on Tuesday.

Speaking with members of the media at SWRHA’s symposium on leadership at the Southern Academy of Performing Arts on Wednesday, Bodoe said:

“I want to give the assurance that the incinerator itself is working well.

“It is a new incinerator that was installed last year and the issue had to do with a contractor who was supposed to remove the garbage and there was a delay of funding and that is what created a temporary situation yesterday.”

Asked how soon the situation will be rectified, he said: “I have just been given the assurance by the CEO that the matter is being dealt with as we speak, so I expect by the end of the day it will be sorted out.”

In addition, Bodoe said the SWRHA was also considering introducing a new type of technology, called the radio wave technology for incineration, which was much more atmosphere friendly.

However, a Public Service Association representative, who wished to remain anonymous, said the incinerator had been breaking down on a regular basis since it was installed last year and was not working at this time.

“They even had to revert to the old incinerator and that is unsafe and unhealthy to people operating that incinerator. Since last week Thursday the incinerator (new one) is down,” he added.

He said workers took the action on Tuesday because since last week they were assured that the garbage problem would have been sorted out.

from: http://www.guardian.co.tt/news/2015-06-19/swrha-chairman-delay-payment-causes-medical-waste-back

Incinérateur de déchets médicaux au Bénin

Incinérateur de déchets médicaux au Bénin : une solution conforme aux normes CE, à haute capacité et adaptée aux besoins locaux

HICLOVER, spécialiste international reconnu dans la fabrication et l’exportation d’incinérateurs de déchets médicaux, présente son modèle spécifiquement configuré pour répondre à un récent appel d’offres au Bénin. Cette solution associe performance environnementale, robustesse et technologie moderne, tout en respectant les exigences strictes des normes CE ou FDA.


 Caractéristiques techniques détaillées

Chambre de combustion principale

  • Parois intérieures entièrement isolées avec des matériaux réfractaires de haute qualité, garantissant une excellente rétention thermique et une grande durabilité.

  • Dimensions internes adaptées aux besoins locaux : 1060 x 800 x 700 mm (+/- 5%) pour optimiser la capacité et l’ergonomie de chargement.

  • Capacité de chargement minimale : 200 kg, permettant le traitement efficace des déchets hospitaliers et biologiques.

  • Puissance calorifique : jusqu’à 420 kW (au lieu de 390 kW), offrant une montée en température plus rapide et une meilleure efficacité de destruction.

  • Principe de chauffage à double passage, pour améliorer le rendement thermique et réduire la consommation de carburant.

Chambre de post-combustion (afterburner)

  • Entièrement isolée, fabriquée avec des briques réfractaires spéciales et une isolation à faible masse thermique.

  • Température minimale garantie : 1100°C, assurant une destruction totale des fumées et des polluants.

  • Contrôle automatique par ventilateurs de combustion pilotés et allumage on-off selon la température.


 Commande et sécurité

  • Automate programmable (PLC) pour gérer tous les cycles, la sécurité et la maintenance préventive.

  • Écran tactile de 6 pouces pour un pilotage intuitif.

  • Enregistrement automatique des données et export via clé USB, permettant la traçabilité et la conformité réglementaire.

  • Bouton d’arrêt d’urgence et indicateurs de cycle, de fonctionnement et d’anomalie pour garantir la sécurité des opérateurs.


 Alimentation et consommation

  • Alimentation électrique : 220–250 V, 50/60 Hz.

  • Carburant : Diesel avec réservoir intégré de 500 litres.

  • Vitesse de combustion : 50–75 kg/h, adaptée aux besoins quotidiens d’un hôpital, d’un centre de santé ou d’un laboratoire.

  • Panneaux isolants de 50 mm superwool pour réduire la déperdition thermique et augmenter la sécurité externe.

  • Conception avec cheminée de section adaptée pour assurer un tirage optimal et limiter les émissions.


 Une solution pensée pour l’Afrique de l’Ouest

Cet incinérateur s’inscrit pleinement dans les politiques publiques visant à :

  • améliorer la gestion des déchets hospitaliers,

  • limiter les risques sanitaires,

  • et respecter les normes internationales en matière d’émissions polluantes.

HICLOVER, fort de son expérience auprès des hôpitaux, ONG et organismes internationaux (ONU, OMS, etc.), propose des solutions clé en main : formation des opérateurs, mise en service et assistance technique.


 Contact et informations

Pour en savoir plus ou demander un devis personnalisé pour votre établissement au Bénin ou ailleurs en Afrique :
Site web : www.hiclover.com
E-mail : sales@hiclover.com


 Mots-clés SEO inclus

incinérateur de déchets médicaux Bénin, incinérateur conforme CE, gestion déchets hospitaliers Afrique, destruction déchets biomédicaux, incinérateur programmable PLC, afterburner haute température.


Mobile: +86-13813931455(WhatsApp)

Email:     sales@hiclover.com     

Pet incinerator lying unused for over 1 yr

The pet incinerator installed at the pet cemetery in Nehru Nagar, Pimpri, is not yet operational despite being installed over a year ago owing to the delay in finalising monetary decisions for laying pipelines for CNG.

Apparently, Maharashtra Natural Gas Limited (MNGL) and Pimpri Chinchwad Municipal Corporation (PCMC) are both adamant on not compromising on the investment in the project for laying pipelines on the 800 metre stretch.

The need for an incinerator was felt when the burial ground went out of space. It has close to 3,000 pets buried on the premises.

The incinerator machine was installed about 14 months ago at the pet cemetery, the only corporation-run cemetery in the State. The veterinary department of the PCMC has successfully got all permissions and is now waiting for the CNG pipeline to be laid as fuel is the prime need for operating the machine.

Dr Satish Gore, Chief Veterinary Officer of PCMC, said, “The problem is that all other options apart from CNG will increase the cost of a single incineration by 3-4 times. For example, using LPG will cost at least 1,400 per incineration, while CNG will cost Rs 300-400.”

MNGL officials said that a proposal has been sent to the veterinary department and that the PCMC has to take a call on it. Dr Gore said the cost was high and is expecting some concession or subsidy, since it is not for a completely commercial purpose. He said, “It is difficult for a smaller department like us to invest so much on laying pipelines. We have even written to the Union  Government to look into the matter.”

However, MNGL officials said, “We have been paying the rights of usage of

Rs 5,000 per metre to the PCMC. The proposal sent to the veterinary department includes this cost. If the PCMC is ready to waive this amount for their own department, the cost will come down by 30 per cent. The laying of pipelines will then cost close to Rs 2-3 lakh.”

Ebola Patients Create 440-Gallons Of Medical Waste Per Day

SAN FRANCISCO (CBS SF) — Ebola patients treated in the United States create a staggering amount of medical waste, and some states aren’t sure how to deal with it.

Each Ebola patient generate an average of eight 55-gallon barrels of medical waste per day, the Los Angeles Times reported.

Pieces of protective gear from gloves and gowns to medical instruments, bed sheets, and even mattresses have to be disposed once they’ve been exposed to the pathogen.

The recommended method for destroying the waste from Ebola patients is incineration, but California’s last medical waste incinerator closed in 2001, and it is illegal in some other states.

California’s department of public health states that if onsite treatment of Ebola medical waste by steam sterilization is not available, facilities can package the waste and transport it to an out of state facility for incineration.  Alabama, Maryland, North Dakota, Oklahoma, Utah and Texas currently have operating incinerators.

by: http://sanfrancisco.cbslocal.com/2014/10/20/ebola-patients-create-440-gallons-of-medical-waste-per-day/